CHARACTERISTICS OF CARBON DIOXIDE GAS ADSORPTION BY GRAIN AND ITS COMPONENTS.

A. YAMAMOTO AND H. MITSUDA

INTRODUCTION

During experiments of grain storage in a CO_2 atmosphere, grains in flexible laminated plastic film bags originally containing CO_2 gas were found to be tightly packed as if packed <u>in vacuo</u> (Mitsuda et al., 1971). This led to the discovery of an interesting adsorption phenomenon of CO_2 gas by grains at a low moisture content and to the development of a technique for skin-packaging, the Carbon dioxide Exchange Method (CEM) (Mitsuda et al., 1972a). Various experiments have been carried out to examine the mechanism of this adsorption phenomenon (Mitsuda et al., 1972b, 1973, 1975, 1977). The purpose of this paper is to summarize the experimental results on the characteristics of CO_2 gas adsorption by grain and its components for the practical use of CO_2 gas in artificial controlled atmosphere storage of grains.

CHARACTERISTICS OF CARBON DIOXIDE GAS ADSORPTION BY GRAIN Equilibrium. Figure 1 shows the time course for CO_2 gas adsorption and desorption by grains at $25^{\circ}C$. The velocity of adsorption varies with the species of grain. Fifty to sixty percent of the maximum adsorption takes place within the first 6 hours in the case of rice and red beans and in about 4 hours for peanuts seeds. The graph also shows that equilibrium is obtained after about 24 hours. Desorption curves show that the CO_2 gas adsorption by grains is almost completely reversed when the grain is allowed to stand in air. The velocity of desorption is larger than that of adsorption. The long time needed to reach adsorption equilibrium and the variation of the rate with the species of grain suggested that diffusion of CO_2 gas into the grain kernel is important in this phenomenon.

<u>Temperature dependence</u>. The amount of CO_2 gas adsorbed by grains varies depending on temperature, increasing at a lower temperature. The velocity of adsorption is not affected as much by temperature.

<u>Moisture dependence</u>. The maximum adsorption of CO_2 gas was measured at moisture contents of rice ranging from 0 to 16.3% to investigate the relationship between the moisture content and the amount of CO_2 gas adsorbed by rice grain. The CO_2 gas adsorption was found to depend on the moisture content of rice as shown in Fig. 2. Adsorption increases almost linearly in brown rice but decreases almost linearly in paddy rice as the moisture content of the grains increases. Hull and

Fig. 1 (left). Time course of CO_2 gas adsorption and desorption by grains (at $25^{\circ}C$). One gram of grains was put into a vessel of a Warburg's manometer and was shaken in an atmosphere of CO_2 gas at a constant temperature bath adjusted to $25^{\circ}C$. The amount of CO_2 gas adsorbed was measured with the lapse of time. To study desorption one gram of grains was placed in an atmosphere of CO_2 gas for more than 48 hrs to adsorb the gas until fully saturated. This grain was transferred quickly into the vessel and then shaken in air.

Fig. 2 (right). Relationship between the moisture content and CO_2 gas adsorbed by rice grain. Defatted brown rice was prepared as follows: Grains were dehydrated and defatted by a gradual ethanol-aceton or ethanol-hexane schedule. Samples were then heated at 105 C for 24 hr to remove the solvent remained in the kernel. Grain samples with various moisture contents were prepared by equilibrating them for 3 to 14 days in desiccators with saturated salt solution. The amount of CO_2 gas adsorbed by the grains was measured in the same way as described in Fig. 1.

defatted brown rice adsorb remarkable amounts of CO_2 gas at the lower moisture content. The maximum solubility level of CO_2 gas in water contained in grains, calculated by Bunsen's absorption coefficients, is found to be lower than one-half of the amount of CO_2 gas adsorbed. This suggests that the CO_2 gas adsorption phenomenon in grains is not merely caused by dissolution of gas into the water. <u>Kinds of grains.</u> Many kinds of cereal grains and pulses showed a similar adsorption phenomenon. Table 1 shows the adsorption amount of CO_2 gas by each of these grains at $20^{\circ}C$ for 3 hr. Wheat, corn, peanuts, soybeans, red beans, sesame seeds, and their flours show the same adsorption phenomenon as rice, but the velocity of adsorption and the maximum amount of CO_2 gas adsorbed vary with the kinds of grains. Peanuts, soybeans, and sesame seeds are good adsorbents, and wheat, rice and flours seem to be relatively poor ones. Compared with conventional adsorbents, such as silica gel and activated charcoal, these grains are all poor adsorbents.

TABLE 1.

The amount of CO_2 gas adsorbed by various grains.

Kinds of grains	Adsorption amount at 20 ⁰ C for 3 hr	Kinds of grains	Adsorption amount at 20°C for 3 hr
Paddy rice	86 m]/kg	Peanuts	560 m1/kg
Brown rice	90	Soybean flour	440
Polished rice	70	Soybean flour	216
Rice flour	60	Red beans	64
Wheat	75	Coffee beans	123
Wheat flour	60	Sesame seeds	230
Corn	170	Black tea	115

<u>Grain components.</u> As shown in Table 2, an inverse relationship was obtained between fat content of brown rice and the amount of CO_2 gas adsorbed. Carbohydrates such as sugars, cellulose and starch in purified forms failed to adsorb the CO_2 gas. A clear relationship was not observed between the protein content of grains and the amount of CO_2 gas adsorbed, although many kinds of pulses of high protein content were found to be good adsorbents.

TABLE 2.

Relationship between the fat content of brown rice and the amount of CO2 gas adsorbed.

		Fat content ^a)	CO ₂ gas adsorbed ^{b)}
Raw brown rice	Fthanol	2.67 %	128 μ1/g 129
beracted brown free wrent	Ether	2.16	185
	Chloroform-methanol (2:1)	1.35	568
	Ethanol-acetone schedule	0.20	1758

a) Determined by Soxhlet methods with ether.

b) Determined by the Warburg's manometry at 25°C.
 All figures are shown on a dry basis.

<u>Porosity</u>. The porosity of the grain kernel was proved to influence the CO_2 gas adsorption phenomenon. A high pressure mercury penetration porosimeter was used for the determination of pore-volume and pore-size distribution of rice kernel in the range of 42 - 300 Å. A relatively larger size of pores was found in paddy compared with those of brown and polished rice. Defatting and/or heat-drying treatment to rice kernel, however, produced abundant pores in their intergranular spaces of starch. Pore volume between the range of 42 Å and 12 μ in diameter was estimated to be 264, 134, 73.7, 31.2 and 21.3 μ l/g (on dry basis) for hull, defatted brown rice, paddy, brown and polished rice respectively.

Fig. 3. Pore-size distribution of rice grain.

TABLE 3. Comparison of pore-volumes of rice grain and hull.

							<u>Hull</u>	Paddy	Brown	Polished
Total por	e volume	(42	Å	-	12 µ)	(µl/g)	264	73.7	31.2	21.3
Micro-por	e volume	(42	Å	-	354 Å)	(µ1/g)	136	38.1	15.4	11.0

<u>Sorption isoterm</u>. According to the classic sorption isoterm of Freundlich, a linear relation is obtained when the logarithms of pressure (P) and sorption volume (V) are plotted. This relation may be written: log V = log k + <u>n</u>log P, where k and <u>n</u> are constants.

250

Experimental results obtained with the adsorption of CO_2 by brown rice at various partial pressures of CO_2 were found to agree with the isoterm as shown in Fig. 4. An almost linear relation between log V and log P_{CO_2} was obtained in the higher partial pressure of the CO_2 (P_{CO_2}) region but not in the lower one. The constant <u>n</u> was calculated as about 1.5.

$$V = \frac{(C_0 - C_e) v}{100 - C_e}$$

V: volume of CO₂ gas adsorbed by brown rice (ml)
C₀: original CO₂ gas composition (%)
C_e: equilibrated CO₂ gas composition (%)
v: original mixed gas volume (ml)

 $\log V = \log k + n \log P_{CD_{r}}$

Fig. 4. Relation between the amount of CO_2 gas adsorbed and the partial pressure of CO_2 (at $25^{\circ}C$). Brown rice was packed in plastic film bags under different compositions of N_2 and CO_2 gas. After the adsorption equilibrium was obtained at $25^{\circ}C$ under atmospheric pressure, the composition of headspace gases was analyzed by gas chromatography and compared with the original composition. The amount of CO_2 gas adsorbed by brown rice was calculated using the equation shown in this figure.

Results obtained in these experiments can be summarized as follows:

- (1) Solubility of CO_2 gas into the moisture and lipids of the grain is assumed to have a minor effect on the CO_2 adsorption phenomenon. No direct relationship is also presented between any special components of grain and the amount of CO_2 gas adsorbed.
- (2) Diffusion of CO_2 gas into the grain is important in this phenomenon. This adsorption phenomenon is very similar to that observed in sorption of gases by charcoal and silica gel, which sorb gases into their many pores.

THE CO2 GAS-PROTEIN INTERACTION IN A GAS-SOLID PHASE.

In the course of investigations to elucidate the mechanism involved in the CO_2 gas adsorption phenomenon by grains, various proteins in solid form were found to be capable of acsorbing CO_2 gas. The characteristics of CO_2 gas adsorption by highly purified protein has been investigated by Warburg manometry and the B.E.T. surface area analyzer.

log V

1

n

-0.5

log Pro

-1 0

Adsorption of CO_2 gas by proteins. Carbon dioxide gas was adsorbed by casein at more than 500 µl/g/24hr while ethylene and oxygen were less than 200 and 50 µl/g/24hr respectively. Approximate equilibrium was obtained after 24 hours. Helium, nitrogen, hydrogen and air were also examined but none of them was adsorbed considerably by casein under the same conditions in the case of CO_2 gas. The amount of CO_2 gas adsorbed by proteins is shown in Table 4. Various proteins were found to adsorb CO_2 gas when they were placed in the high partial pressure of the gas concerned. Casein, gelatin and raw silk were revealed to be the better adsorbents as compared with the others.

TABLE 4.

Proteins	CC_2 gas adsorbed ^{a)}
Casein	662 µ1/g
Gelatin	532
Egg albumin	267
Glutenine	231
Hemoglobin	182
Zein	150
Soybean flour	220
Whole milk	200
Bleached Chlorella algae	163
Hydrocarbon-assimilating yeast	115
Gluten	111
Rice bran	109
Raw silk	690
Fibroin, from silk	110
Chinese white rabbit hair	106

Adsorption of CO_2 gas by various proteins in dried state.

a) Determined by Warburg manometry at 25⁰C for 24 hr. All figures are shown on a wet basis.

<u>Moisture dependence</u>. In Fig. 5, the amount of CO_2 gas adsorbed by casein and gelatin are plotted against their moisture content. The lower the moisture is, the greater the adsorption amount of CO_2 increases.

<u>Temperature dependence</u>. The amount of CO_2 gas adsorbed by zein varies depending on temperature, as shown in Fig. 6, increasing at a lower temperature. Other proteins also show a similar tendency as shown in Fig. 7. The temperature dependence of CO_2 adsorption by protein is close to that of physical adsorption. Although large amounts of CO_2 gas were adsorbed by histamin, tyramine, L-lysine and L-arginine, temperature dependence of the adsorption is somewhat different from that of protein, such as casein and gelatin.

252

Fig. 5. Effect of moisture content on the amount of CO_2 gas adsorbed by casein and gelatin. Protein samples at various moisture contents were prepared by equilibrating them for 3 to 14 day in desiccators with saturated solutions of LiCl, K_2CO_3 , $Mg(NO_3)_2$, NaCl and KNO_3 at relative humidities between 11 and 88%.

<u>Reversibility of CO₂ gas adsorption by protein and others.</u> Reversibility of the CO_2 gas adsorption by protein, protein hydrolyzates, amines and amino acids was examined. More than 90% of CO₂ gas which had been adsorbed by casein and gelatin desorbed when they were put into an atmosphere of low partial pressure of CO_2 but only a few percentage desorbed in the case of amino acid and histamine. Interaction between CO_2 gas and amines and amino acids seemed to be "chemical reaction" or "chemisorption" rather than "physical adsorption".

Effect of particle size on CO_2 adsorption by bacto-peptone and casein. Bactopeptone, one of the protein hydrolyzates for a microbial culture medium, showed an interesting result on CO_2 adsorption. This was one of the samples which fairly adsorbed CO_2 gas when they were tested in larger particles above 32 mesh. Gas adsorption increased more than 20 times when the sample was ground. The less the peptone particle size, the more the amount of CO_2 gas adsorbed. This result suggested that the gas diffusion process in the particles was the rate-limiting factor in CO_2 gas adsorption by proteins. This was confirmed by the determination of a diffusion coefficient of CO_2 gas in casein particles of three different sizes. By applying the Boyd equation, the degree of the adsorption (V_t/V_{eq}) was found to be in proportion to a square root of time in the region below one-half of V_t/V_{eq} as shown in Fig. 9. The diffusion coefficient obtained in these samples was around 10^{-9} cm³sec. This value was in the proper range of the CO_2 gas diffusion coefficient in the solid, but lower in liquid and in gas $(10^{-5} - 1 \text{ cm}^2/\text{sec})$.

Fig. 6 (left). Effect of temperature on CO_2 gas adsorption by zein. The amount of CO_2 gas adsorbed was measured with the lapse of time by the B.E.T. surface area analyzer at one-half of atmospheric pressure.

Fig. 7 (right). Temperature dependence of CO_2 gas adsorption by casein, gelatin and histamine. The amount of CO_2 gas adsorbed was measured in the same way described in Fig. 1.

<u>Adsorption isoterms</u>. Fig. 10 indicates the adsorption isoterms for N_2 and CO_2 in casein determined by the B.E.T. method. A typical polymolecule adsorption curve (BET type) was obtained with N_2 gas adsorption in -196°C. The carbon dioxide gas adsorption curve, however, showed an adsorption curve of the Henry type in which the amount of gas adsorbed was in proportion to the pressure. Because the experimental pressure (76 cmHg) at 25°C is situated in the lower region of the saturated vapor pressure (4,830 cmHg) of CO_2 gas, experimental results can also be assumed to be in the early part of BET, Langumuir, Freundlich and other types of isoterms.

Fig. 8. Effect of particle size on CO_2 adsorption by bacto-peptone.

Fig. 9. Effect of particle size on CO_2 adsorption by casein.

Fig. 10. Adsorption isoterms for N_2 and CO_2 in casein. The amount of gas adsorbed was measured by the B.E.T. surface analyzer in the condition described in this figure.

Particular functional groups involved in CO₂ gas adsorption by protein.

In order to identify the functional groups which really contribute to CO_2 gas adsorption by proteins, ε -amino groups of lysine residues of egg albumin were chemically modified with trinitrobenzene sulfonic acid to various degrees. Experimental results showed that about 60% of the total amount of CO_2 gas adsorbed by solid egg albumin diminished by completely modification of the ε -amino groups of lysine residues. This directly provides evidence that the ε -amino group of lysine is capable of adsorbing the CO_2 gas in protein in the same manner as in free amino acid. As to the remaining 40% of the total amount of CO_2 gas adsorbed by egg albumin, the guanidinium group of arginine residues and α -amino group in protein were shown to take part in it by the following experiments. Correlation coefficients found between the amount of CO_2 and each of the variables, the lysine content, the arginine content and the total of lysine and arginine contents of protein and its hydrolyzates were 0.76, 0.54 and 0.85 respectively. Chemical modification of the guanidinium groups of arginine residues of lysozyme by 1,2-cyclohexanedione also showed the decrease of the amount of CO₂ gas adsorbed by lysozyme. The ability of CO₂ gas adsorption by α -amino group of amino acids and oligopeptides was found to be developed by the elongation of the peptide chain of glycine and other amino acids, by the removal of the α -carboxyl group of histidine and tyrosine to corresponding amines and by the esterification of α -carboxyl group of leucine with <u>p</u>-nitrophenol. These results clearly indicate that CO₂ binding sites in protein in the gas-solid phase system are ε -amino, α -amino and guanidinium groups. Table 5 gives the amounts of CO₂ gas adsorbed by a series of oligopeptides and collated with the pK_a value for their α -amino groups reported in the literature.

TABLE 5.

Effect of peptide chain length on the CO_2 gas adsorption by amino group.

	pK _a values	CO_2/NH_2	
	(u-Mn ₂)(t-Mn ₂)		
Gly	9.78	0.024	
GIy-GIy	8.25	0.111	
Gly-Gly-Gly	8.09	0.465	
Gly-Gly-Gly-Gly	-	1.47	
Polyglycine	7.4	-	
Lys	9.18 10.79	3.97	
Lys-Gly	-	4.49	
Lys-Glu-Ala	-	6.50	
γ-Glu-Cys-Gly	8.75	1.03	

Differences between the CO_2 gas adsorption by proteins and by amino acids and amines.

The reasons why similar functional groups of proteins and amino acids were able to show different reactivity to CO_2 gas, such temperature dependence, moisture dependence and reversibility were examined. Differences between the CO_2 gas adsorption by proteins and by amino acids and amines can be best explained with the following two different interactions between the amino group and CO_2 :

1. Carbamate formation.

R-NH₂ + CO₂ ⇒ R-NHCOOH

2 Anionic reaction.

The pK_a values of amino groups in protein are lower than those in amino acids. In the solid state of protein, therefore, amino groups must be present in the unprotonized

form $(R-NH_2)$ and form carbamate salts with CO_2 . This interaction is weak and . reversible as is well known in the interaction of hemoglobin and CO_2 in blood. Characteristics of CO_2 gas adsorption by protein are assumed to be caused by the carbamate formation. On the other hand, amino groups in free amino acids and amines seem to be present in the protonized form $(R-NH_3^+)$ even in a solid state for their higher pK_a values. This amino group in protonized form may react with the bicarbonate ion which is formed from CO_2 and water via carbonic acid. An experiment on the CO_2 gas adsorption by the basic amino acids such as lysine and arginine in dried, and moistened form revealed that the amount of CO_2 gas adsorbed by these free amino acids increased remarkably with their increased moisture content, while an inverse relationship was observed in protein as shown in Fig. 5.

CONCLUSION

The CO_2 gas adsorption phenomenon observed in grain storage in a CO_2 atmosphere is assumed to be caused by a mechanism combined with a diffusion process in the grain kernel and a carbamate formation of CO_2 gas with functional groups of protein which are exposed in the internal surface of the grain kernel. The reversible interaction of CO_2 gas with functional groups of protein is assumed to contribute to retaining grain qualities during the storage.

REFERENCES

- Mitsuda, H., Kawai, F. and Yamamoto, A., 1971. Hermetic storage of cereals and legumes under the water and ground. Mem. Coll. Agr. Kyoto Univ., 100: 49-69.
- Mitsuda, H., Kawai, F., Kuga, M. and Yamamoto, A., 1972a. Carbon dioxide gas adsorption by the cereal grains and its application to packaging (Part 1). J. Japanese Soc. Food Nutr., 25: 627-631. (in Japanese, with English abstract).
- Mitsuda, H., Kawai, F. and Yamamoto, A., 1972b. Underwater and underground storage of cereal grains. Food Technol., 26: 50-56.
- Mitsuda, H., Kawai, F., Kuga, M. and Yamamoto, A., 1973. Mechanism of carbon dioxide gas adsorption by grains and its application to skin-packaging. J. Nutr. Sci. Vitaminol., 19: 71-83.
- Sci. Vitaminol., 19: 71-83. Mitsuda, H., Kawai, F., Yamamoto, A. and Nakajima, K., 1975. Carbon dioxideprotein interaction in a gas-solid phase. J. Nutr. Sci. Vitaminol., 21: 151-162. Mitsuda, H., Yamamoto, A., Suzuki, F., Nakajima, K., Yasumoto, K. and Kawai, F.,
- Mitsuda, H., Yamamoto, A., Suzuki, F., Nakajima, K., Yasumoto, K. and Kawai, F., 1977. Identification and properties of reactive sites in protein capable of binding carbon dioxide in a gas-solid phase system. J.Nutr. Sci. Vitaminol., 23: 145-152.

258