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ABSTRACT
The use of calorimetry as a tool to understand the effects of controlled atmospheres
(CA) on insects is briefly reviewed. A variety of data are presented to illustrate the
various types of information that calorimetry can make available to researchers. The
use of a calorimeter connected to a mass spectrometer to determine the occurrence of
anaerobic respiration is described and reported. We conclude that calorimetry is a
useful tool to simplify the experimental options when developing new insecticidal CA
treatments. It can also be used for development of other treatments such as fumigants.

INTRODUCTION

Crop & Food Research began work on development of controlled atmospheres (CAs)
as quarantine treatments for fresh produce in 1985 (Lill and van der Mespel 1986).
Despite continuing research and development around the world, no quarantine
treatments based on CAs have entered commerce. Two themes emerge from the
reviews of CAs as quarantine treatments (e.g. Klag 1986; Ke and Kader 1992;
Carpenter and Potter 1994; Hallman 1994), that are reinforced by recent work
(Carpenter 1995, 1997; Mitcham et al,. 1997; Zhou et al., 2000; Carpenter et al.,
2001). These are:

1. There are variations in response to CAs between taxa and between seasons
for specific taxa that have not been explained.

2. The physiological and biochemical bases of the insecticidal effects have not
been adequately explained, despite Mitz (1979) formulating a set of key
hypotheses.
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We began to question approaches to development of CAs for quarantine treatments to
discover what commodity traders and regulators need to know if CAs are to be used
as quarantine treatments. There appear to be six issues:

In the absence of a simple binary mortality response to CAs how reliable are

CA disinfestation treatments?

Are moribund insects viable?

Are all moribund/comatose insects demonstrating the same physiological or

biochemical response to CAs?

Are there commonalities between insect taxa in their responses to CAs that

could be used to develop generic disinfestation systems?

What is the key composition/application of a controlled atmosphere?

How do CAs kill insects?

The last question may be the most important; the other questions may simply be
sub-sets of it. We developed a set of hypotheses around the premise that
understanding whole organism responses to CAs would facilitate development of
better approaches to understanding the biochemical and physiological bases of why
CAs might be useful as quarantine disinfestation methods. The least complex way to
determine whole organism effects of a treatment on insects is to use calorimetry.

METHODOLOGY

Calorimetry simply measures heat production by the test insects, basically the sum of
anabolic and catabolic activities. Over the last decade microcalorimetric methods
have been developed for studying plant material (Criddle and Hansen 1999). We
have recently used similar methods to determine the response of a range of insects at
various life stages to changes in temperature and CAs. In addition we are developing
combined calorimetry — mass spectrometry methods so that O, consumption and CO,
production can be measured simultaneously with metabolic heat rates. Details of the
experimental methods will be given elsewhere (Downes et al. 2001).

A Calorimetry Sciences Corporation (Utah) differential scanning calorimeter is
used for the metabolic heat measurements. This has a sample ampoule volume of 1
mL and up to 3 samples can be run simultaneously. Although this is designated as a
scanning calorimeter for most bio-calorimetry experiments it is operated in the
isothermal mode, e.g. held at a constant temperature of say 25°C. The detection limit
in the isothermal mode is about 2 microwatts, which is adequate for studies of small
insects. Advantages of this calorimeter are the ease and speed with which the sample
temperature can be changed and the rapid establishment of thermal equilibrium at the
new temperature. We have found this calorimeter to be particularly suitable for the
rapid evaluation of the response of insects to gross changes in conditions.

To avoid erratic thermal signals due to insects moving to the lid of the ampoule,
mobile insects are confined to the bottom of the ampoule by a fine stainless steel
mesh. When it is desired to change the atmosphere during the course of an
experiment a modified lid is used on the ampoule. This lid has silica inlet and outlet
capillaries sealed to it of the type used in gas chromatography. When it is desired to
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sample the composition of the atmosphere in the ampoule by mass spectrometry an
additional fine capillary of 50 micron i.d. is included. An important experimental
detail is that good quality hardware such as valves should be used in the gas handling
system so that, for instance, truly anoxic conditions can be achieved in the ampoule.

The mass spectrometer provides a convenient means of following the changes in
the chemical composition of the atmosphere in the ampoule during metabolic heat
determinations.

Problems with CA disinfestation

We had found significant variation year to year in the response of Thrips obscuratus
(Crawford) (Thysanoptera: Thripidae), Nysius hultoni (White) (Coleoptera:
Lygaeidae), Myzus persicae (L) (Hemiptera: Aphidae) and Pseudococcus longspinis
(Targette-Tonzonii) (Hemiptera: Pseudococcidae) to a variety of CAs (van
Epenhuijsen et al. 2001; Lill and van der Mespel 1986; Carpenter 1995, 1997;
Carpenter unpublished; Potter et al. 1992). It was clear that if CAs were to be used as
quarantine treatments then the basis of this variation needed to be understood.

The second issue was lack of a testable hypothesis that attempted to explain how
CAs killed insects. The literature on this topic is challenging. Many workers have
found biochemical changes in insects that have died as a result of treatment with
insecticidal CAs (Carpenter et al. 2001). This approach where phenomena have been
described has not led to a unified understanding of the processes involved when a CA
is insecticidal. The published information is very useful and gives clues to the
underlying processes, but we still lack a unifying hypothesis.

Fourney et al., (1991) found dead insects contained no ATP; did they die because
they had none, or did they have none because they were dead? AliNiazee (1972),
found a range of biochemical parameters that varied with treatment with anoxic
atmospheres, but did not yet produce an overview that integrates the observed
phenomena. Donahaye and Navarro (2000), found that after treatment with
insecticidal CAs insects lacked an energy source, which in itself does not explain
why the insects died as it does not show what biochemical processes were involved.
Friedlander and Navarro (1979), showed that in developing insect lines resistant to
CAs, the physical volume affected the dynamics of mortality. Stevenson et al.,
(unpublished) hypothesized that pupal thrips were more resistant to CAs because they
had fewer spiracular openings than the larvae or adults, again suggesting a simple
physical component to the mortality process.

The published record

Invertebrate eco-physiologists and entomologists have used calorimetry to test a
number of hypotheses in recent years. Harak et al., (1999) used calorimetry to study
the effects of a toxicant on the physiology of a diapausing lepidopteran pupa.
Adaptation to freezing in Antarctic nematodes, in large Orthoptera, and in
Curculionidae has been quite extensively studied using calorimetry (Block 1994;
Ramlov ef al. 1996; Rojas ef al. 1992). Metabolic heat flux in pregnant viviparous
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cockroaches was studied by Schultze-Motel and Greven (1998) as an approach to
understanding the energetic demands of viviparity. Zhou et al., (2000) studied the
effects of CAs on metabolic heat production by pupae of a lepidopteran caterpillar
and concluded that the method provided an insight into the relative contribution of O,
and CO, to insect mortality. They also suggested that their data showed that the
mechanisms involved in mortality from treatment with CO, were different from those
from treatment with O,.

Hypotheses

We hypothesized that under insecticidal controlled atmospheres, insect metabolic
activity would decline slowly. There would be a consequential change from aerobic
to anaerobic respiration, leading to changes in the ratios of metabolic heat rate to
rates of O, consumption and CO, production.

We also postulated that the gross response of an organism would vary with life
stage and habitat. We expected that insects living on the outside of a plant (aphids,
leaf-rollers) would react differently to those living in plant tissue (codling moth)
where environmental CO, levels would be higher and O, levels slightly lower than
they were on the plant surface. Stored-product insects were expected to be different
again, because they live in dry environments with relatively high CO.,.

We had also begun to question the cost-effectiveness of standard approaches to
development of a novel quarantine treatment. For a specialty crop such as
persimmon, exported from New Zealand, to quarantine-sensitive markets such as
Japan, with at least 15 actionable pests present, the huge cost of empirically
developing a data set that identified the most tolerant life stage of the most tolerant
pest put innovation beyond reach. Could calorimetry be used as a tool to short-circuit
this process?

Lastly, as a controlled atmosphere could be anything between 0 and 20 (100?)%
0O, and 0-100% CO,, at temperatures between 0 and 45°C, it is difficult to determine
which parameters to test empirically. This becomes more complex when one includes
sequential CAs in the consideration, particularly for perishables in transit (Shelton
and Carpenter unpublished).

Can calorimetry provide insights at the beginning of the process of developing a
new quarantine treatment?

EXPERIMENTS AND RESULTS

Calorimeter output

Figure 1 shows a typical calorimeter trace. In this case codling moth pupae were the
test organism, although all traces are generally similar. Values below O show that the
sample is producing heat, that is, endothermic heat production is being measured. In
this experiment where the air was replaced with CO, and nitrogen (N,), metabolic
heat decreased rapidly when the CA was introduced. At the end of the run the
experimental atmosphere was replaced by air. The metabolic heats at the end of
experimental run when the insects were returned to air were lower than at the start of



the experiment showing that the insects had been stressed in some way. The
periodicity of the trace in air may be due to discontinuous gas exchange by the pupae.

Fig. 1. Typical calorimeter trace, (codling moth pupae) under 60% CO, and 40% O,. The
excursions at the points where the ampoule was flushed with the CA or air are due to
perturbation of the thermal equilibrium at that point.

The instantaneous concentrations of O, and CO, in the ampoule can be evaluated
directly for the mass spectrometer readings. It is more difficult to measure the rate of
O, consumption and CO, production by the insects, because a significant correction
has to be made for the effects of the continuous withdrawal of gas from the ampoule
by the mass spectrometer and replacement by gas of the original composition. We
have used the Poiseuille equation to calculate the flow rate down the 2 m of capillary
that connects the calorimeter to the mass spectrometer. When this correction is
applied, the resultant rates of O, consumption and CO, production for insects in air in
the calorimeter are very close to those expected on the basis of metabolic heat rates.

Taxonomic comparisons

The responses of Ctenopseutis sp. (leafroller caterpillar), Cydia pomonella (L)
(codling moth caterpillar and pupa), Ephestia kuehniella (Mediterranean flour moth),
Myzus persicae (green peach aphid), Sitophilus oryzae (rice weevil) and Tribolium
confusum (confused flour beetle) to hypercarbic (60% CO,) and hypoxic (0-10% O,)
atmospheres were all similar (data not presented): a very rapid switch to a low level
of metabolism occurred once the atmosphere was introduced. An example of this is
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shown for C. pomonella in Fig. 1. This general case applied to all the other taxa,
except for larvae of S. oryzae, although this may be more of a methodological issue
than a real difference. Neither the natural environment of the species nor the life
stage appeared to affect the dynamics of the process. The presence of O, did have an
impact with the base level of the atmospheres being higher when O, was present than
it was when the atmosphere was anoxic.

Metabolic heat, metabolic substrate and respiratory gas production
The combination of calorimetry and mass spectometry was used to obtain three
measures of insect respiration rate:

¢ the metabolic heat rate, and Ry, and R, the rates of O, consumption and of
CO, production, respectively.

The direct heat of combustion of nearly all organic compounds has a value of
—455+/- 15 kJ per mole of O, consumed [Thornton’s Rule (Criddle and Hansen
1999)], and this is the value to be expected for ¢/Ry, for aerobic respiration
unaccompanied by growth. Note that the heat of combustion per mole of organic
compound can be very different. The ratio Rgg,/Ry, would be unity for a
carbohydrate substrate under these conditions, but for other substrates it would vary
depending on the average formal oxidation number of the substrate carbon.

Results are given in Table 1 for an experiment with aphids in which the original
air atmosphere was replaced by 5% O,+ 95% N,, and then by air again. All values in
the Table are instantaneous values. The reported O, values are a result of insect
metabolic depletion of the original values. There was a large decease in metabolic
heat production as the O, level decreased. At all three O, values the ratio ¢/R, was
close to the theoretical value of —455 kJ per mole of O, for the oxidation of organic
substrates. In the first stage of the experiment, in partially depleted air R¢q, was
similar to Ry, giving a value near unity for R¢g,/Rg,. In the low O, atmosphere R,
was relatively large in comparison to Ry, leading to a R,/Rg, ratio significantly
greater than unity, suggesting that the metabolic pathway being utilized had changed,
or, that a more oxidized substrate was being utilized. We speculate that the slightly
reduced value of R, at the end of the experiment was a result of the replenishment
of the previously depleted pool of more oxidized substrate.

Thermal cycling

We found that cycling the temperature to which the insects were subjected, gives a
rapid indication of the level of physiological stress associated with the temperatures
involved. This is shown in Fig. 2. This shows that the effects of 40 and 50°C were
more dramatic than were 0°C. We believe this approach will help us understand
which CAs and possibly fumigants are most effective, although the key experiments
have not yet been carried out.



TABLE 1
Effect of oxygen level on the metabolism of Myzus persicae at 40°C (fresh weight of aphids
0.02203 g)
Time from start of experiment — minutes 15 40 65
Oxygen concentration % 15.7 3.85 18.9
Rate of metabolic heat production yW -519 -207 -406
Rate of oxygen consumption mol sec™ 12.1x 10" 4.45x 10" 8.56 x 107"
Rate of carbon dioxide consumption 11.8x 107 5.86x 10 7.94x107°
Ratio of heat to oxygen kJ mol -429 -465 -474
Ratio of heat to carbon dioxide kJ mol -440 -353 -511
Ratio of carbon dioxide to oxygen 0.98 1.32 0.93

Fig. 2. Proportions of original metabolic heat rate when Myzus persicae were cycled between
25°C and various experimental temperatures after allowing 30 min for the system to stabilize
between changes.

Time and temperature interactions

These effects, which are central to developing a novel quarantine system based on
CA:s, are easily explored with calorimetry. As both temperature and time increase, so
does insect mortality. The effects of temperature on the responses of adult and larval
confused flour beetles to air, 5% O, and 60% CO, are shown in Fig. 3. Here the
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interaction between the composition of the atmosphere and temperature can readily
be seen.
Adult confused flour beetle
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Fig. 3 Effects of varying temperature on metabolic heat production by selected insects when
held in air or a hypoxic or a hypercarbic controlled atmosphere. Diamonds = air; Boxes = 5%
O,; Triangles = 60% CO,.
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In air, the metabolic heat production for all three insects was similar. At ambient
temperatures, metabolic heat production by larval confused flour beetle was
suppressed more by 5% O, than it was by the adults, and that of the rice weevil was
intermediate between them. In the hypercarbic atmosphere all three experimental
insects demonstrated similar and dramatic levels of suppression of metabolism. This
relatively simple data set illustrates how calorimetry can be used to develop
understanding of the responses of insects to CAs without extensive empirical
experimentation.

Effects of anoxic conditions:

In Fig. 4 data are presented that show the relationship between the ability of Myzus
persicae to recover its original metabolic heat levels after various time periods under
anoxia. When they recovered to more than 50% of their initial metabolic heat levels
they were apparently alive. Below 50% of their initial metabolic heat level, they were
dead. There were some variations close to the 50% value.

Fig. 4. Recovery of metabolic heat rate by Myzus persicae to different exposure periods to
different anoxic atmospheres.

Effects of various CAs on insects:
We compared the effects of 4 atmospheres at 0, 20 and 40°C on Mediterranean flour
moth larvae after an exposure of 1 h. The data are shown in Table 2. An O, level of
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5%, with the balance N,, had some effect on the metabolic heat produced by the
larvae. When the O, concentration was 1%, the heat levels were rather lower than
they were when O, was 5%. In 5% O, + 60% CO,, with the balance N,, the metabolic
heat rates were higher than when there was 60% CO,, with the balance N,. In two
treatments the insects died, one in which heat levels had been reasonable high and in
the other very low. In another treatment they were very low without the insects
dying. These data show that there are differences between hypercarbic and hypoxic
atmospheres and how they affect insects, and show that metabolic heat production
alone is not necessarily a good predictor of insect mortality.
TABLE 2

Metabolic heats of Mediterranean flour moth larvae in four CAs after 1 hour as a percentage
of their initial metabolic heat

Temperature 5% O, 1% O, 5% CO,+5% O, 60% CO,

0°C 85% 66% 53% 32%

20°C 79% 79% 87% 6%

40°C 82% 38% 58% (died) 2% (died)
DISCUSSION

We have been able to demonstrate that under low O, conditions insects change from
aerobic to anaerobic respiration as was predicted. Thus they reduce their reliance on
standard respiratory substrates.

The recognition of a change in the nature of metabolism is dependent, in part, on
the appropriateness of the correction to the mass spectrometry data. As noted above
the ¢/Ry, ratios are in accord with the theoretical value which suggests that this is so,
but a more direct method to confirm the calculated rate of gas removal from the
ampoule by the mass spectrometer would be useful.

We have also shown that under anoxic or CA conditions, there is a sudden switch
to a much lower metabolic level and not the detectable graduated change in metabolic
rate that we had expected. That is, the change occurs within the thermal re-
equilibration period of the calorimeter after the disturbance caused by changing the
atmosphere.

We have shown that the insecticidal effectiveness of a CA or anoxic conditions
can be estimated better by thermal cycling than by simple measurement of metabolic
heat rate. The thermal cycling data indicate that an insect becomes programmed to
die when its recovery metabolic heat rate in air is less than 50% of its initial
metabolic heat rate in air. This suggests that under CAs and anoxic conditions,
insects lose biochemical and/or physiological systems sequentially until they are
unable to replace or reactivate them. From this we hypothesize that CAs do not have
a single point of effect. In turn, this explains why many researchers have found such
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a wide variety of biochemical phenomena associated with insect mortality when
treated with CAs. This may also explain why mortality curves for groups of insects
treated with CAs are extremely variable, ranging between 20 and 80% mortality.

In general, the change in metabolic heat rate was similar to all the insect species
we have tested, regardless of normal habitat, or life stage. These findings differ from
the observations of Hoback and Stanley (2001) who suggested that habitat had a
significant effect on insect tolerance to hypoxia, with grain pests more likely to be
adapted to oxygen depletion than pests of fresh commodities.

We have begun to show some of the applications of isothermal calorimetry to
postharvest entomology. There are technical issues still to be solved. We still require
appropriate empirical data to “ground truth” what we find from the calorimetry data.
We can find what type of atmosphere is most likely to kill insects with very little
effort and use this as a directive to cost-effective empirical data collection.

There are some limitations to the process: to effectively interpret data when using
calorimetry, access to a significant amount of empirical data is essential to ensure
that understanding of the data output is correct; for small insects groups of
individuals must be tested; some experimental aspects require further development.

There are also advantages: the method is rapid; experiments are repeatable; data
provide corroboration for other experiments, allowing more robust analysis of data
than would otherwise be possible.
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